Teaching a Problem Course; Interdisciplinary Teaching

Maria Klawe Harvey Mudd College

Outline

- Problem course:
 - My definition of a problem course
 - An example from UBC
- Teaching interdisciplinary courses
 - Engineering and Society (Princeton)
 - Science One (UBC)
 - Integrated Experience (HMC)

Problem course

- Required course
- History of student complaints
- Poor teaching evaluations for almost all instructors

CPSC 220

- Discrete math for CS majors
- First math course requiring proofs
- Teaching evaluations routinely poor even when taught by good profs

Beliefs about reasons for problems

Students:

– Why do CS majors need proofs?

Instructors

- CS majors don't see need for proofs
- Grab bag of topics (logic, induction, graphs, algorithms)
- Lack of connection to programming

Ideas (mostly copied)

- Assignment 0
- Weekly quizzes
- Math cartoons
- In-class team activities
- Challenging problems
- Feedback surveys
- Programming assignments
- Food

outcomes

- Good teaching evaluations thereafter
- 80 20 split on whether "fun" activities were a useful addition
- Expectations of instructor and students influence teaching evaluations

Teaching interdisciplinary courses

- Single instructor
 - David Billington, Engineering and Society
 - Few people can do it
- Multiple instructors
 - Science One
 - Integrated Experience
 - Integrated Science

Benefits of multiple instructors

- Multiple perspectives
- Instructors model scientific dialogue
- Spawns teaching development and creativity
- Builds connections across departments and disciplines

Disadvantages of multiple instructors

- Expensive
- Heavier workload for instructors
- Heavier workload for students
- Not for everyone

Questions or comments

Why I'm teaching calculus ... or what I had heard ...

- Student, alumni and parent concerns
 - Poor teaching
 - No connection with applications
 - Exams are too hard
 - Loss of confidence and interest in mathematics
- Instructor concerns
 - Mixed preparation
 - Students don't work hard enough
 - Students don't ask questions or interact in class

School of Engineering concerns

- 15 20% attrition from BSE program in first two years
- Attrition rate from women and minorities up to twice that for white males

Standard Calculus at Princeton

- Math 103 (derivatives, limits, intro to integration)
- Math 104 (integration techniques, series, polar coordinates, complex numbers, intro to differential equations)
- Math 201 (multivariable calculus)

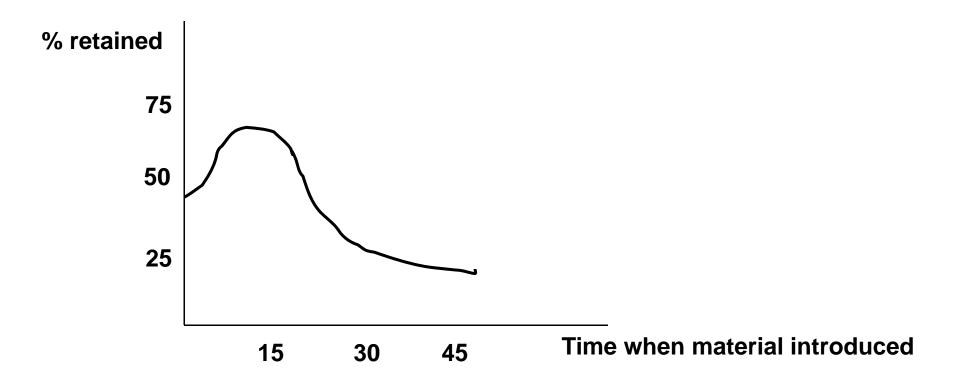
Calculus at Princeton

- 3 hours of lectures per week
- Several small (10 20 students) sections for each course
- Senior faculty member as course coordinator
- Common midterms and exams
- Biweekly lunch meetings of instructors
- Weekly review session open to all sections
- Office hours (instructor and TAs), tutors, residential advisors

But...

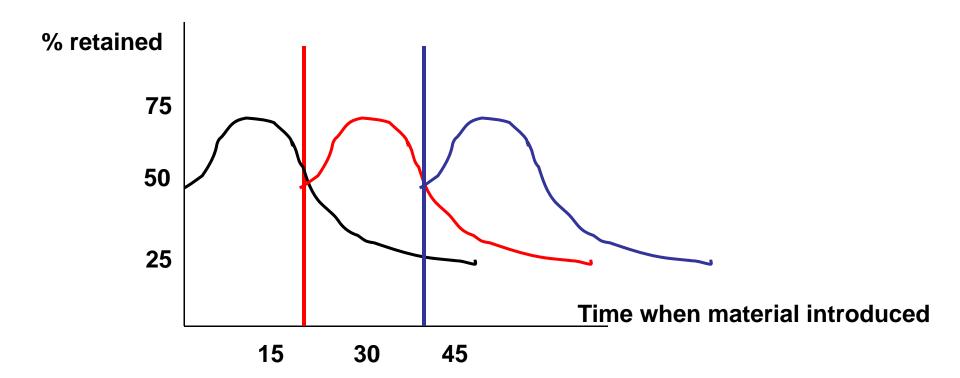
- Students encouraged to place out of as many courses as possible
- Primarily taught by assistant professors and senior grad students
- Assistant professors hired without interviews
- 0% tenure rate in math department (hence teaching seen as unimportant by assistant professors)

Maria's Math 104 experiment


- Students have more fun
 - Food in every class
 - Calculus cameo in every class
 - Assigned to challenge teams of 4 or 5
 - Ice-cream social
- Emphasis on active learning, different learning styles, feedback, etc.

Maria's Math 104 experiment

- One of nine sections
 - Same exams, biweekly instructor lunches, etc.
- 35 students (half BSE, half AB)
- Students spend more time
 - Two two-hour classes per week
 - Extra homework (challenge problems)
 - Extra 90-minute team problem-solving session each week (with TAs)


Active learning

- Richard Felder, Chem. Eng., NC State
 - http://clte.asu.edu/active/felder.htm

Active learning

- Richard Felder, Chem. Eng., NC State
 - http://clte.asu.edu/active/felder.htm

